MATH:1460 Quiz #2 Study Guide

Kerry Tarrant kerry-tarrant@uiowa.edu

University of Iowa - September 3, 2021

Below is a list of material to know for Quiz #2. Notes can be found under Files in the lecture's ICON module. For clarity of any topic, please refer to the book (found in MyLab). You can also email me.

Week 2 Material

- (i) Section 1.2
 - (a) Summation notation
 - (b) Least squares lines (formula will be attached in the test)
- (ii) Section 1.3
 - (a) Properties of functions
 - (b) Determine whether a relation defines a function
 - (c) Vertical line test
 - (d) Find the domain and range of a given function
 - (e) Evaluate a function
 - (f) Composition of functions
- (iii) Section 1.4
 - (a) Find vertex of quadratic function and graph the quadratic function
 - (b) Solve quadratic equation

Practice problems

Please see pages 65-66 of book (available on MyLab).

MATH:1460 Quiz #4 Study Guide

Kerry Tarrant

kerry-tarrant@uiowa.edu

University of Iowa - September 16, 2021

Below is a list of material to know for Quiz #4. Notes can be found under Files in the lecture's ICON module. For clarity of any topic, please refer to the book (found in MyLab). You can also email me.

Week 4 Material

- (1) Section 2.2
 - (i) Solve log equationsSimplify log by using the rules;
 - (ii) Change base formula.
- (2) Section 2.3
 - (i) Application problem on exponential growth and decay functions (such as yeast production, decay of radioactive substances);
- (3) Section 2.4
 - (i) Transition between radian measure and degree measure;
 - (ii) Trig functions in a right triangle;
 - (iii) The value of trig functions on general real radian measure (you can figure out by looking for the reference point in first quadrant);
 - (iv) Know how to graph a trig function;
 - (v) Know how to calculate the amplitude and the period of a general trig function.

Practice problems

The following problems are from sections 2.2 - 2.4.

- (1) Write each exponential equation in logarithmic form:
- (a) $5^3 = 125$
- (b) $2^7 = 128$
- (c) $(\frac{5}{4})^{-2} = \frac{16}{25}$

(2) Solve each equation:

- (a) $\log_x 36 = -2$
- (b) $\log_9 27 = m$
- (c) $\log_3(x^2 + 17) \log_3(x+5) = 1$

(3) 500 g of iodine-131 is decaying exponentially. After 3 days 386 g of iodine-131 is left.

- (a) Write in the form $y = y_0 e^{kt}$ giving the number of grams of iodine-131 after t days.
- (b) Write the function from part **a** in the form $y = y_0(386/500)^{f(t)}$.
- (c) Use your answer from part **a** to find the half-life of iodine-131.

(4) A group of Tasmanian botanists have claimed that a King's holly shrub, the only one of its species in the world, is also the oldest living plant. Using carbon-14 dating of charcoal found along with fossilized leaf fragments, they arrived at an age of 43,000 years for the plant, whose exact location in south-west Tasmania is being kept a secret. What percent of the original carbon-14 in the charcoal was present?

(5) Complete the following table. Use the $30^\circ - -60^\circ - -90^\circ$ and $45^\circ - -45^\circ - -90^\circ$ triangles. Do not use a calculator.

θ	sin $ heta$	$\cos \theta$	tan <i>θ</i>	$\cot \theta$	$\sec \theta$	csc θ
30° 45°	1/2	$\sqrt{3}/2$			$2\sqrt{3}/3$	
45°			1	1		
60°		1/2	$\sqrt{3}$		2	
120°	$\sqrt{3}/2$		$-\sqrt{3}$			$2\sqrt{3}/3$
135°	$\sqrt{2}/2$	$-\sqrt{2}/2$			$-\sqrt{2}$	$\sqrt{2}$
150°		$-\sqrt{3}/2$	$-\sqrt{3}/3$			2
210°	-1/2		$-\sqrt{3}$ $-\sqrt{3}/3$ $\sqrt{3}/3$	$\sqrt{3}$		-2
240°	$-\sqrt{3}/2$	-1/2			-2	$-2\sqrt{3}/3$

(6) Find the amplitude (a) and period (T) of each function. Then graph each function over a twoperiod interval.

(a) $f(x) = \cos(3x)$

(b)
$$h(x) = -\frac{1}{2}\sin(4\pi x)$$

(c) $g(t) = -2\sin(\frac{\pi}{4}t+2)$

MATH:1460 Quiz #5 Study Guide

Kerry Tarrant kerry-tarrant@uiowa.edu

University of Iowa — October 5, 2021

Below is a list of material to know for Quiz #5. Notes can be found under Files in the lecture's ICON module. For clarity of any topic, please refer to the book (found in MyLab). You can also email me.

Week 4 Material

(1) Section 3.1 - Limits

- (i) One-sided limits
- (ii) Limit of a function
- (iii) Existence of limits
- (iv) Piecewise functions
- (v) Rules for limits
- (vi) Limits at infinity and finding limits at infinity
- (2) Section 3.2 Continuity
 - (i) Determine where a function is continuous
 - (ii) Determine where a function is discontinuous
 - (iii) Removable discontinuity
 - (iv) Continuity on an open interval
 - (v) Continuity on a closed interval
 - (vi) Intermediate value theorem
- (3) Section 3.3 Rates of Change
 - (i) Average rate of change
 - (ii) Average speed
 - (iii) Instantaneous rate of change
 - (iv) Velocity

Practice problems

The following problems are from sections 3.1 - 3.3.

- (1) Find $\lim_{x\to 2} g(x) = \frac{x^3 2x^2}{x 2}$.
- (2) Determine $\lim_{x\to 2} h(x)$ where

$$h(x) = \begin{cases} x^2 & \text{if } x \neq 2\\ 1 & \text{if } x = 2. \end{cases}$$

(3) Find $\lim_{x\to -2}$ where

$$f(x) = \frac{3x+2}{2x+4}$$

- (4) Find $\lim_{x\to 0} \frac{|x|}{x}$.
- (5) Suppose $\lim_{x\to 2} f(x) = 3$ and $\lim_{x\to 2} g(x) = 4$. Use the limit rules to find the following limits.
 - (i) $\lim_{x\to 2} [f(x) + 5g(x)].$
 - (ii) $\lim_{x \to 2} \frac{[f(x)]^2}{\ln q(x)}$.
- (6) Use the properties of limits to help decide whether each limit exists. If a limit exists, find its value.

(i)
$$\lim_{x\to 3} \frac{x^3-9}{x-3}$$

- (ii) $\lim_{x\to 0} \frac{1-\cos^2(x)}{\sin^2(x)}$ (Hint: consider trig identities.)
- (iii) $\lim_{x \to \infty} \frac{x^2 + 2x 5}{3x^2 + 2}$
- (iv) $\lim_{x\to\infty} \frac{2x^2 7x^4}{9x^2 + 5x 6}$
- (7) Find all values of x where the function is discontinuous. For each value of x, give the limit of the function at that value of x. Be sure to note when the limit doesn't exist.
 - (i) $f(x) = \frac{5+x}{x(x-2)}$

(ii)
$$f(x) = \frac{x^2 - 25}{x+5}$$

(iii)
$$p(x) = x^2 - 4x + 11$$

- (iv) $f(x) = \sin(\frac{x}{x+2})$
- (v) $j(x) = \ln \left| \frac{x+2}{x-3} \right|$
- (vi) $g(x) = \tan(\pi x)$
- (8) Graph the given function, find all values of x where the function is discontinuous, and find the limit from the left and from the right at any values of x that are discontinuous.
 - (i)

$$f(x) = \begin{cases} 1 & \text{if } x < 2\\ x + 3 & \text{if } 2 \le x \le 4\\ 7 & \text{if } x > 4 \end{cases}$$

(ii)

$$h(x) = \begin{cases} x^2 + x - 12 & \text{if } x \le 1\\ 3 - x & \text{if } x > 1 \end{cases}$$

- (9) Find the value of the constant k that makes the function continuous.
 - (i)

$$g(x) = \begin{cases} \frac{3x^2 + 2x - 8}{x + 2} & \text{if } x \neq -2\\ 3x + k & \text{if } x = -2 \end{cases}$$

(ii)

$$f(x) = \begin{cases} kx^2 & \text{if } x \le 2\\ x+k & \text{if } x > 2 \end{cases}$$

- (10) Find the average rate of change for each function over the given interval.
 - (i) $y = -4x^2 6$ between x = 1 and x = 3
 - (ii) $y = \frac{1}{x-1}$
 - (iii) $y = \sqrt{x}$ between x = 1 and x = 4
 - (iv) $y = \sin x$ between x = 0 and $x = \frac{\pi}{4}$
- (11) Find the instantaneous rate of change for each function at the given value.
 - (i) $f(x) = x^2 + 2x$ at x = 0
 - (ii) $s(t) = -4t^2 6$ at t = 2
 - (iii) $g(t) = 1 t^2$ at t = -1
 - (iv) $F(x) = x^3 + 2$ at x = 0
- (12) If the instantaneous rate of change of f(x) with respect to x is positive when x = 1, is f increasing or decreasing there?
- (13) Suppose the position of an object moving in a straight line is given by $s(t) = t^3 + 2t + 9$. Find the instantaneous velocity at each time.
 - (i) t=1
 - (ii) t=4